[개념] 모든 사건에서 특정 사건이 일어날 수 있는 수를 나타낸 것 통계학에서 모든 사건을 표본 공간 (sample) 이라 하고, 특정 사건은 사건 (event) 라고 한다. 조합을 이용해서 확률을 알아낼 수 있다. '박스'에 '꽝'이 적힌 종이가 4장이 있고, '선물'이 적힌 종이가 3장이 있다고 하자. 3장을 뽑을 경우, 그 중에 꽝이 2개, 선물이 1개일 확률은 ? \( \Longrightarrow { \mathbin{_4 C _2 } \ \mathbin{_3 C _1} \over \mathbin{_7 C _3}} = { 6*3 \over 35} = {18 \over 35} \) [실습1] 위의 예를 코드로 구현해보자. def combina_(): numL = int(input('numL 입력 : ..
조합
[개념] n개에서 r개를 택하는 경우의 수 (순서가 중요하지 않다는 점에 유의.) {1, 2, 3} 와 {2, 1, 3} 은 같은 경우이다. 공식의 원리는 다음과 같다. n개 중에 r개를 순서를 생각해 뽑은 후, r개 중에 r개를 순서를 생각하여 뽑는 경우의 수를 나눠준다. 그럼 순서를 고려해 뽑힌 r개에 대하여 각 순서가 달라질 경우의 수를 나눠주게 되어, 결국 순서를 생각하지 않고 n개 중 r개를 뽑았을 때의 경우의 수가 된다. $$ \mathbin{ _n C _r} = {n! \over r!(n-r)! } = {n(n-1)(n-2)\ ...\ (n-r+1) \over r!} $$ 예) \( \mathbin{_8 C _3 } = 8*7*6 / 3*2*1 = 56 \) 8부터 3개 곱하고, 3 팩토리얼..